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We explore the existence of monogamy relations in terms of Rényi-a entanglement. By using
the power of the Rényi-a entanglement, we establish a class of tight monogamy relations of
multiqubit entanglement with larger lower bounds than the existing monogamy relations for
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a > 2,thepowern > 1,and 2 > o > >

, the power 1 > 2, respectively.
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1. Introduction

Entanglement is one of the most important features of quantum
mechanics, which distinguishes quantum mechanics from
classical theory. A key property of entanglement is known as
monogamy relations [1, 2], that is, entanglement cannot be
freely shared unconditionally among the multipartite quantum
systems. Monogamy relation provides a way to characterize
multipartite entanglement sharing and distribution. The first
mathematical characterization of monogamy relation was
expressed as a form of inequality for three-qubit state in terms
of squared concurrence [1]. Furthermore, Osborne and Ver-
straete generalized this monogamy inequality to arbitrary mul-
tiqubit systems [3]. Later, the monogamy inequality was also
generalized to other entanglement measures [4—10]. In fact,
monogamy of entanglement is fundamentally important in the
context of quantum cryptography since it restricts on the
amount of information that an eavesdropper could potentially
obtain about the secret key extraction. Moreover, monogamy of
entanglement also has many important applications in quantum
information theory [11], condensed-matter physics [12] and
even black-hole physics [13].

As a generalization of entanglement of formation, the
Rényi-a entanglement [14] is a well-defined entanglement
measure and it has been widely used in the study of quantum
information theory [15-21]. Recently it has been shown that if
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a > ﬁ; L the squared Rényi-a entanglement satisfies the

monogamy relation in N-qubit systems [9]. It has also been
shown that when o > 2, the Rényi-a entanglement obeys the
monogamy relation in multiqubit systems [22]. In general,
tightening the monogamy relations can provide a precise
characterization of the entanglement in multipartite systems. In
particular, the monogamy relations are saturation for W-class
states and this implies that this type of multipartite entanglement
can be completely characterized [23, 24]. Furthermore, a class
of tight monogamy relations was derived by raising the power
of the entanglement measures [25-29]. In this paper, we focus
on tightening the monogamy relations in terms of Rényi-ao
entanglement by raising the power of the Rényi-a entanglement
for multiqubit systems. It is shown that these new monogamy
relations are tighter than the results in [9, 28, 29].

2. The Rényi-a entanglement

The Rényi-a entanglement of a bipartite pure state [¢))4p, is
defined as [14]

E.(|t)a) =

log, (trp%), (1)

1 -«

forany o > Oand o = 1, p, = tig(|¢)ap (¥]). If  tends to 1,
the Rényi-a entanglement converges to the von Neumann
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entropy. For a bipartite mixed state p,p, the Rényi-a entan-
glement is defined via the convex-roof extension

E.(pyp) = min Z P Ea(|¥i)ag), ()

where the minimum is taken over all possible pure-state
decompositions of p,, = >, pi|ti)as (Wil

Let us recall the definition of concurrence. For a bipartite
pure state |¢)4p, the concurrence is [30]

= J2(1 — trp}),

where p, = tig(|¢)ap (¢]). For a mixed state psp, the con-
currence is defined via the convex-roof extension

Clpap) = minZ Dj C(|¢j>AB)7
J

C(¢)an) 3

“

where the minimum is taken over all possible pure-state
decompositions of p,z = 3=, pjl¢;)as (9}

For an arbitrary N-qubit state p ABy By, € Hi ®
Hp, @ ® Hpy ;s Pajp,...n,., denote the state p,p. 5
viewed as a bipartite state with partitions A and
BB, -+ By_i. The concurrence C(p,p,...5, ) satisfies [3]

CZ(PABI)* *CZ(PABN,I) 20, (5)

where p g = tp,...5, 5, By (Pap,--By l) Ha, Ry Hay
are Hilbert spaces of the systems A, By,---, By_, respectively.
V-1

CZ(PA|BI.4.BN71) -

It has been proved that [20, 22], when o > , fora
two-qubit state, the Rényi-a entanglement has an analytical
formula

Eo(pap) = 8.(C(pap)) (6)

here the function g,(x) is a monotonically increasing and
convex function expressed as

1 11—
8, (¥) = logy)|| ————
- 2
1+ V1 —x? !
+—] | (N
2
in0<x<1.
The function g,(x) in equation (7) for a > 2, has one
important property such that [22]
g (V2 37) 2 8,0 + 2,0, ®)

for0 < x,y, x> +y2 < 1.

When o > ﬁ; , it is easy to see in [9] that the function
g.(x) satisfies the following inequality

[5.(V=+57)] > 8. + 5,002,

Xy, x>+ y? < 1.

€))

for 0 <

3. Tighter monogamy relations for Rényi-a
entanglement

In the following, we establish a class of tight monogamy
relations of Rényi-a entanglement related to the power 7. We
first provide the following lemma.

Lemma 1. For x € [0, 1] and t > 1, then

L l)x’
2

Proof. Note that the inequality (10) holds with equality
for x =0, we need to prove (10) only for x = 0. Let us

(1+x)’>1+§x+(2’— > 14+ @ — D,

10)

consider the function f(z, x) = % Then, % =
,1[1+<z Dy — (1 4 x)~ 1] o

= When t > land 0 < x < 1, it is easy

< +x)’ ! Thus <0, f( x)

is a decreasing functlon of x, f (t, x) >f@ =

20 — 5 — 1. It follows that (1 4+ x)* > 1 + x + (2’ - 5 - l)x’.

Since x > x!, for x € [0, 1] and 1 >
t
1+ (2f — Dx'. Altogether, we can get (1 + x)’
(2, L 1) > 14 (2 — D'

Now we provide our main results of this paper.

1, one getsl+
N4+ 2 - x>
>1+ 30+

Lemma 2. For an N-qubit state p,p . p € Hs®

HBI QK- HBN,I, lf C(pABi) Z C(PA|B,.+I4..BN71) fOV i=1,
2,--,N —2, N> 3 then

E(?(pAlBl-»-BN,]) > E(Z(pABl) + (27 - DE(?(PABZ)

=+ 27 = DNEN(pyp, )
+ (271 _ 1)N_3{Eg(pABNZ)

+ QE(?7 ! (pABN,z)E& (pABNf 1)

2
+ (27; _ g — 1)Eg(pABN])}, (11
for a = 2 and the power n > 1; and
EJ(PA|B,~-~BN,1) Z E] (PAB,) + (2 - I)EJ(PAB)JF
+ (Zt - I)N_4Eo? (pABN—3) + (2[ - I)N_S{EO? (pABN—Z)
t _
+ EEJ Z(PABN,2)E§(PABN,1)
t ~
+ (2; _ 5 — 1)E&(PABN1)}’
(12)

for2 > a > ﬁz

and the power ~y = 2, where t = 5
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Proof. For o > 2, by the inequality (8), for n > 1, we have

[ga(\/x2 +y? )]n > [g,(x) + g,(N]".

Without loss of generality, we assume x >y, the
inequality (10) of lemma 1 ensures

13)

[&.(\ )] =t + L1015,

y2
-2 -1 or. (14)

Let us first consider an N-qubit pure state |U)4p,...5,_,-
The entanglement E,(|¥)45,...5, ,) and C(|¥)sp,...5, ,) are
related by the function g,(x) in equation (7) since the sub-
system B; --- By_; can be regarded as a logic qubit. Thus, we
can obtain

EJ(W)A18,--By_)
= [g,(C|¥)a1p,...By_ NI

>[5, ([ )]
> [8,(C(p 4V’
+ 218, (Coap 1!

X ga(ch(PABZ) + -+ CZ(PABNH))

U
+ (277 - g - 1)[811(\/C2(pA32) + + C2(pABN71) )]
> [8,(Cpap )V + 27 = DIgy (C(p g DI+ -+
Q- 1)N74[8(,(C(/)A3N73))]n
+ Q27 = DV g, (C(pyp, NI
+ g[ga(c (P apy " '84(C(pap, )

+ (271 _ g — 1)[gn(C(PABN71))]U}
=El(pag) + @7 = DEJ(pag,)

+ 4@ = DNENp ypy )

+ Q7 = DVHE (p g, )

[/
SEd "Pagy )Ea(P g, )

+ (271 _ g — I)E(g(pAl’iN—l)}7

+

15)

where we have utilized the monogamy inequality (5) and
the monotonically increasing property of the function g.(x)
to obtain the first inequality, the second inequality is
due to inequality (14) by letting x = C(p,p) and y =
JC2(pap) + -+ + C(pyp, ). The third inequality is obtained
from the iterative use of inequality (14). Here we are using the
fact that C(p,5) > Cloup, oy ) 2 C2Pap.) + -+ Cpapy_ )

i=1,2-N—2 and 1+gx+(2nfgf l)x” > 1+
(2" — 1)x" for n > 1. Since for any two-qubit state p,,, when

o> %, E,(pyp) = 8,(C(p,p)), we obtain the last equality.

Let us now consider an N-qubit mixed state PA|B,--By_

Assume that p, ;50 =S pdoamay_, (ol € Ha @ Hp® - @Hpy_,

is the optimal pure-state decomposition for E,(pyp,...5, )-

Thus, we can deduce

Eo a8y ) = Sk PeEa(l@i)ais, By )

=3 Pk &a(CUL)aiB,-By)
= ga(kakC(|¢k>A|Bl'“B/V—1)
= 80(21p[C(|X[>A|B1“'BN—1)
= ga(C(,OA|Bl.,.BN7,)), (16)

where the first inequality follows from the convex property of
the function g, (x), the second equality is satisfied because
{pP;s IX)AB,--By_,} 1S the optimal pure-state decomposition
for C(pA|BlA.ABN71)~
Consequently we can write
EJ(Paip,...5y)
P [ga(c(ﬂAwlmBNfl))]"

> [8.(JC )+ +Copan, D]

> [8,(C(pap )V + (27 = DI, (Cpg )+ -
+ 27— DV (C(pap, NV
+ @7 = DY 8, (C(pap, I

+ g[ga(chBN,z))]"—lgn<c<pABN,,))

+ (277 - g — 1)[ga(C(PABN1))]n}

= EZJ(PABI) + (27 - I)EZJ(PABZ)
+ Q2T = DV ET(pag,, )

+ (27] _ I)N_S{E(;](pABNz)

+ 2B (pany JEa(pa, )

+ (2’7 - g - 1)E;'(pABNI>}, a7

here in the second inequality we have used the monogamy
inequality (5) and the monotonically increasing property of
the function g (x). Iterative use of inequality (14), we have the
third inequality. We also use the fact that C(p,p) >

CPaipyy ) 2 CHOap, )+ + Cpap, s i=1,

2,..N—2and1 + Lx + (2" — 1 l)x” > 14 (20 — Dt
V7 -1
for n > 1. Because when o > — E,(ps5) = 8,(C(p4p))

for any two-qubit state p,,, one gets the last equality. Com-
bining (16) and (17) completes the proof of inequality (11).
The proof of inequality (12) is very similar to that of the

inequality (11). By the inequality (9), for 2 > a > ﬁ; L
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y=2,t= % > 1, we can obtain Moreover, based on lemma 2, if C(p AB) =
Coap,,...p,.) for i=1, 2, -, m and C(psp) <
v C for i = 1, N—2,¥1 <m<N —

[e. ()] 2 e P + g opy. sy Ramem ) T TS vhsm

3, N > 4, we have the following lemma.

Lemma 3. For an N-qubit state p,p . p € Ha @ Hp ®
®HBN P lf C(pAB) = C(,OA|B.H‘..BN71) for i=1,2,--m,
and C(pap) < Clogy gy ) Jor j=m+ LN =2,

Again, without loss of generality one may assume x > y,
by the inequality (10) of lemma 1, one finds

341 By-1
N t V1< m<N_3N>4then
2,2 "+ = e i
I:ga(m):l > [ga(x)] + 2 [ga(x)] [ga (y)] Ea (pA|Bl'”BN’])
i (2l o 1)[g o > EJ(pag) + 27— DE!(pyp)
2 (19) o @ = D" EN (P ap,)

+ Q1 = D"UEI (pap,,.) + -+ EJ(pap, )]

Now, using the inequality (19), following a similar procedure + " — 1)'11{(2n _n_ 1) E)pag, )
. . . N—
as above, we can obtain the inequality (12). The proof of 2

lemma 2 is completed. e
P L (pan, DED 0an, )+ Ellpas, ) | @0
In particular, we consider the case N = 3. Note that when

> 2 and the power 1 > 1,if E,(pp) = Ea(p4p,), then we

arrive at for a = 2 and the power n > 1; and
E] (PA|B,»-»BN,])
EJ(pais,8,) Z EJ(pap) + zEn (P as)Ea(pag) 2 E](pag) + 2 — DE](pag,)
+ o+ @ = D"E(pag,)
n ; a(PaB,
+ (2" -1 I)EJ@ ) 20) ,
2 AB2 + (2" = l)m+1[E(:’(pABm+l) ++ E) (pABN,3)]

Q- 1)m{(2t _ % — 1)EJ(pABN72)

+ 2E2(PABN JE (PABN,I)

If E,(pap) < Ealpap,). then

E(paps,8) = EJ(pap) + gE;’*%pABz)Ea(pAB])

+ EJ(pABNl)}, (25)
+ (2" - g - 1)5(;7(;)/431). 1)
for2 > a > ﬁz and the power ~y = 2, where t = 5
V-1
Also, note that when 2 > o > 5 and the power p.oo¢ For o > 2, from lemma 2, we have

v =22, if E, (pAB) E, (pAB) we can write
E(papy..5y )

B ) > B2 0as) + 2E20) B0 ) > 18, (Coap)! + 2 = Dlg,(Clp )T
) QT 12, (C(p gy, DI
+(3-3-)Eem. @) @ 1) [, (Cp )P

+ g[&(C(,oABm))]"—'gl,<C<pA|BmH...BN,1)>

IfE.( ) < E,( 7) then
P aB, PaB (271 — 2 — 1)[gUK(C(,0A|Bm+l By l))] }

E](paip,5) = Ed (pagy) + %EJ*Z(pABgEé(pAB,) > [8,(C(pap NI + 27 = Dg, (C(p 4"
Ly . Q7 = 1) g, (C(pap N
* (22 i I)Eﬂ’ (P an)- @3) + 21— D)™[g,(Clparp,. oy V- (26)
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Figure 1. The y axis is the Rényi-a entanglement of |¢) with o = 2

and its lower bound. The (red solid) line a represents the Rényi-2
entanglement of |)4 pc in Example. The (green dashed) line b

denotes the lower bound given by inequality (21). The (blue) line ¢
expresses the lower bound from the result in [28, 29] when o = 2.
The (black) line d is the lower bound from the result in [9].

When C(/)ABI.) < C(PA|BI.H..,BN71) for j=m+1,--,N -2,
applying the preceding procedure, one finds

[8.Coars -y DI
> (2'1 -1 1)[ga(C<pAB,,,H))]'f

280 (CPa, DI (Coap, o I

+18.(Cou, oy DV
> (27— D{Ig,(C(pag, D" + -+ [8,(C(pyp, NI}

L ) PR
2 80(C 05y DI (C P, I

+ lg, (C(PAB,W 1))]"~
(27)

Combining inequalities (26) and (27), we obtain the inequal-
ity (24). The inequality (25) can be proved in a similar way.

To see the tightness of our monogamy relations of
multiqubit entanglement, we give an example below.

Example. Under local unitary operations, the three-qubit pure
state can be written as [31]

l¢)asc = Aol000) + Ae'?[100)
+ Ao[101) 4+ M3|110) + Ag111), (28)

where 0 < ¢ <, A\, > 0,5 =0,1,2,3,4,and ¢ N\ =
1 4T 4 3 N
)\1*7’)\2_79>\3_77)\4_0'

1. Suppose that \y = >
Straightforward calculation of the Rényi-« entanglement
shows that Ex(|¢)apc) = 0.424 89, Ez(pyp) = 0.138 98,
E>(pyc) = 0.257 16, for a = 2. One can explicitly see that
our lower bound is larger than the results in [9, 28, 29], as
shown in figure 1.
One can that E%(|<p)A|BC) = 0.497 25,

Es(pyy5) = 0.181 27, E3(py o) = 0.318 78, for o = 3. It is

obtain

0.06f
0.04f
0.02f

Y

Figure 2. The y axis is the Rényi-« entanglement of |p) with o = 1.5

and its lower bound. The (red solid) line e represents the Rényi-1.5
entanglement of |p)4 ¢ in Example. The (green dashed) line f

denotes the lower bound given by inequality (23). The (blue) line g
is the lower bound from the result in [9].

clear from figure 2 that our lower bound is larger than the
results in [9].

4. Conclusion

In this paper we have investigated the tight monogamy relations
in terms of Rényi-a entanglement. By using the power of the
Rényi-a entanglement, we have provided a class of tight
monogamy relations for o« >2, the power n>1 and
2>a 2> ﬁ; L the power 1 > 2, respectively. We have also
shown that these new monogamy relations of multiparty entan-
glement with larger lower bounds than the former results
[9, 28, 29].

Multipartite entanglement can be regarded as a funda-
mental problem in the theory of quantum entanglement. It has
attracted much attention over the past two decades. Our results
provide a finer characterization of multiqubit entanglement
sharing and distribution based on the Rényi-o entanglement.
The framework can also be applied to other entanglement
measures [4—10]. Our results cannot only provide a useful
methodology to study further the monogamous property of
multipartite quantum entanglement, but also may contribute to a
fully understanding of the multipartite quantum entanglement.
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